MULTIPLE CORRECT ANSWER

The value of k (k > 0) such that the length of the longest interval in which the function $f(x) = \sin^{-1} |\sin kx|$ $+\cos^{-1}(\cos kx)$ is constant is $\pi/4$ is/are

$$(1)$$
 8

$$(2)$$
 4

SOLUTION

(2)
$$f(x) = \sin^{-1}|\sin kx| + \cos^{-1}(\cos kx)$$

Let $g(x) = \sin^{-1}|\sin x| + \cos^{-1}(\cos x)$

$$g(x) = \begin{cases} 2x, & 0 \le x \le \frac{\pi}{2} \\ \pi, & \frac{\pi}{2} < x \le \frac{3\pi}{2} \\ 4\pi - 2x, & \frac{3\pi}{2} < x \le 2\pi \end{cases}$$

g(x) is periodic with period 2π and is constant in the continuous

interval
$$\left[2n\pi + \frac{\pi}{2}, 2n\pi + \frac{3\pi}{2}\right]$$
 (where $n \in I$) and $f(x) = g(kx)$.

So, f(x) is constant in the interval

$$\left[\frac{2n\pi}{k} + \frac{\pi}{2k}, \frac{2n\pi}{k} + \frac{3\pi}{2k}\right]$$

Thus,
$$\frac{\pi}{4} = \frac{3\pi}{2k} - \frac{\pi}{2k}$$

or
$$\frac{\pi}{k} = \frac{\pi}{4}$$

or
$$k=4$$